An Ethernet hub, active hub, network hub, repeater hub, hub or concentrator is a device for connecting multiple twisted pair or fiber optic Ethernet devices together and making them act as a single network segment. Hubs work at the physical layer (layer 1) of the OSI model. The device is a form of multiport repeater. Repeater hubs also participate in collision detection, forwarding a jam signal to all ports if it detects a collision.
Hubs also often come with a BNC and/or AUI connector to allow connection to legacy 10BASE2 or 10BASE5 network segments. The availability of low-priced network switches has largely rendered hubs obsolete but they are still seen in older installations and more specialized applications.
Contents |
A network hub is a fairly unsophisticated broadcast device. Hubs do not manage any of the traffic that comes through them, and any packet entering any port is broadcast out on all other ports. Since every packet is being sent out through all other ports, packet collisions result—which greatly impedes the smooth flow of traffic.
The need for hosts to be able to detect collisions limits the number of hubs and the total size of a network built using hubs (a network built using switches does not have these limitations). For 10 Mbit/s networks, up to 5 segments (4 hubs) are allowed between any two end stations. For 100 Mbit/s networks, the limit is reduced to 3 segments (2 hubs) between any two end stations, and even that is only allowed if the hubs are of the low delay variety. Some hubs have special (and generally manufacturer specific) stack ports allowing them to be combined in a way that allows more hubs than simple chaining through Ethernet cables, but even so, a large Fast Ethernet network is likely to require switches to avoid the chaining limits of hubs.
Most hubs detect typical problems, such as excessive collisions and jabbering on individual ports, and partition the port, disconnecting it from the shared medium. Thus, hub-based Ethernet is generally more robust than coaxial cable-based Ethernet (e.g. 10BASE2, thinnet), where a misbehaving device can adversely affect the entire collision domain. Even if not partitioned automatically, a hub makes troubleshooting easier because status lights can indicate the possible problem source or, as a last resort, devices can be disconnected from a hub one at a time much more easily than a coaxial cable. They also remove the need to troubleshoot faults on a huge cable with multiple taps.
Hubs are classified as Layer 1 (Physical Layer) devices in the OSI model. At the physical layer, hubs support little in the way of sophisticated networking. Hubs do not read any of the data passing through them and are not aware of their source or destination. Essentially, a hub simply receives incoming packets, regenerates the electrical signal, and broadcasts these packets out to all other devices on the network.
In the early days of Fast Ethernet, Ethernet switches were relatively expensive devices. Hubs suffered from the problem that if there were any 10BASE-T devices connected then the whole network needed to run at 10 Mbit/s. Therefore a compromise between a hub and a switch was developed, known as a dual-speed hub. These devices consisted of an internal two-port switch, dividing the 10BASE-T (10 Mbit/s) and 100BASE-T (100 Mbit/s) segments. The device would typically consist of more than two physical ports. When a network device becomes active on any of the physical ports, the device attaches it to either the 10BASE-T segment or the 100BASE-T segment, as appropriate. This prevented the need for an all-or-nothing migration from 10BASE-T to 100BASE-T networks. These devices are hubs because the traffic between devices connected at the same speed is not switched.
Historically, the main reason for purchasing hubs rather than switches was their price. This has largely been eliminated by reductions in the price of switches, but hubs can still be useful in special circumstances: